As global temperatures rise, how will lake ecosystems respond? As they warm, will lakes — which make up only 3 percent of the landscape, but bury more carbon than the world’s oceans combined — release more of the greenhouse gases carbon dioxide and methane? And might that create a feedback loop that leads to further warming?
To predict the effects of rising air temperatures on the carbon cycle of lakes, Rensselaer Polytechnic Institute researchers will link computer models of changing weather, water temperature, and emissions of carbon dioxide and methane for 2,000 lakes across the United States, including Lake George, through 2105. The project is supported with a $300,000 grant from the National Science Foundation, and led by Kevin Rose, an assistant professor in the Department of Biological Sciences at Rensselaer and the Frederic R. Kolleck ’52 Career Development Chair in Freshwater Ecology.
“We know lakes are important in the global carbon cycle — absorbing and emitting carbon — and that’s critical to regulating global air temperatures. But we don’t know how the role of lakes will change as a result of rising air temperatures,” said Rose. “Right now, we can model changes for an individual lake — using characteristics like surface area, depth, water clarity, and temperature profile — but to be useful as a planning and research tool, we need to work on a much larger scale.”
Continue reading at ScienceDaily
Image via Lisa McKeon, USGS
Terms of Use | Privacy Policy
2016©. Copyright Environmental News Network