The impacts of a warming planet are widespread and diverse. The amount of snow the American west receives each year is a significant factor in how much water is available for agricultural irrigation and human consumption.
ADVERTISEMENT
<!–/* * Replace all instances of INSERT_RANDOM_NUMBER_HERE with
* a generated random number (or timestamp).
*
* The backup image section of this tag has been generated for use on a
* non-SSL page. If this tag is to be placed on an SSL page, change the
* 'http://ad10.walklightmedia.net/delivery/…'
* to
* 'https://ad10.walklightmedia.net/delivery/…'
*
* This noscript section of this tag only shows image banners. There
* is no width or height in these banners, so if you want these tags to
* allocate space for the ad before it shows, you will need to add this
* information to the tag.
*
* If you do not want to deal with the intricities of the noscript
* section, delete the tag (from … to ). On
* average, the noscript tag is called from less than 1% of internet
* users.
*/–>
… to
A new report projects that by the middle of this century there will be an average 56 percent drop in the amount of water stored in peak snowpack in the McKenzie River watershed of the Oregon Cascade Range – and that similar impacts may be found on low-elevation maritime snow packs around the world.
The findings by scientists at Oregon State University, which are based on a projected 3.6 degree Fahrenheit temperature increase, highlight the special risks facing many low-elevation, mountainous regions where snow often falls near the freezing point. In such areas, changing from snow to rain only requires a very modest rise in temperature.
As in Oregon, which depends on Cascade Range winter snowpack for much of the water in the populous Willamette Valley, there may be significant impacts on ecosystems, agriculture, hydropower, industry, municipalities and recreation, especially in summer when water demands peak.
The latest study was one of the most precise of its type done on an entire watershed, and was just published in Hydrology and Earth System Sciences, with support from the National Science Foundation. It makes it clear that new choices are coming for western Oregon and other regions like it.
“In Oregon we have a water-rich environment, but even here we will have to manage our water resources differently in the future,” said Eric Sproles, who led this study as a doctoral student at OSU.
“In the Willamette River, for instance, between 60-80 percent of summer stream flow comes from seasonal snow above 4,000 feet,” he said. “As more precipitation falls as rain, there will more chance of winter flooding as well as summer drought in the same season. More than 70 percent of Oregon’s population lives in the Willamette Valley, with the economy and ecosystems depending heavily on this river.”
Annual precipitation in the future may be either higher or lower, the OSU researchers said. They did calculations for precipitation changes that could range 10 percent in either direction, although change of that magnitude is not anticipated by most climate models.
Forest with snowpack image via Shutterstock.
Read more at Oregon State University.