Marine carbon sinking rates confirm importance of polar oceans



About the same amount of atmospheric carbon that goes into creating plants on land goes into the bodies of tiny marine plants known as plankton. When these plants die and sink, bacteria feed on their sinking corpses and return their carbon to the seawater. When plankton sink deep enough before being eaten, this carbon is taken out of circulation as a greenhouse gas to remain trapped in the deep ocean for centuries.

How much of this happens in different regions of the ocean would seem like an academic question, except during an era when humanity is spewing carbon dioxide into the air at record-high levels and wondering where all that carbon will go in the future.

A University of Washington study published this week (July 25) in the Proceedings of the National Academy of Sciences uses a new approach to get a global picture of the fate of marine carbon. It finds that the polar seas export organic carbon to the deep sea, where it can no longer trap heat from the sun, about five times as efficiently as in other parts of the ocean.

“The high latitudes are much more efficient at transferring carbon into the deep ocean,” said first author Thomas Weber, who did the work as a postdoctoral researcher at the UW and is now an assistant professor at the University of Rochester in New York. “Understanding how this happens will certainly allow a more complete prediction of ocean responses to climate change.”

Continue reading at EurekAlert!

Image: Zooplankton via NOAA


Terms of Use | Privacy Policy

2016©. Copyright Environmental News Network

Leave a Reply