Lakes Environmental Research Inc., Receives Landmark Patent
Red Sea surgeonfish use metabolically diverse giant bacteria to digest different types of algae, according to new research. Not only do these findings explain the basis of surgeonfish diversity, but they may also provide a valuable genetic resource for biofuel research.
An international team led by KAUST researchers used high-throughput sequencing techniques to study symbiotic microbe communities in the intestines of marine-algae-feeding Red Sea surgeonfish. By analyzing the genomes, they discovered that the communities are dominated by a single group of giant bacteria known as Epulopiscium, and that they lack the diversity found in the microbiomes of terrestrial herbivores.
“The degradation of plant biomass in terrestrial vertebrates usually requires cocktails of enzymes originating from gut microorganisms, each of which has the capacity to break down different constituents,” explains KAUST research scientist David Ngugi, who led the study. Algae lack many of the complex cell wall constituents and polysaccharides found in land plants, such as lignin and cellulose, and so a simpler microbial community is likely sufficient to digest them.
Read more at King Abdullah University of Science Technology (KAUST)
Image: Surgeonfish Naso elegans are reported to feed on macroscopic brown algae. (Credit: © 2017 Till Rothig and Anna Roik)
Terms of Use | Privacy Policy
2017©. Copyright Environmental News Network